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The topic of violation of Bell’s inequality in quantum
theory has been studied by authors!'~®! mainly from the
point of operator algebra in Hilbert space. But the ge-
ometry involved in the violation of Bell’s inequality has
not been expounded. The purpose of this paper is to de-
duce an analytical expression for the violation of Bell’s
inequality by quantum theory and plane trigonometry,
and expound the violation and maximal violation of the
first, second type Bell’s inequality in detail. Further, we
find out the sufficient conditions for the region in which
Bell’s inequalities are violated. We note that the paper
by Greenberger, Horne and Zeilinger (GHZ) has demon-
strated Bell’s theorem in a new waym, by analyzing the
geometry of a system consisting of three or more corre-
lated spin —1/2 particles. Unlike Bell’s original theorem
and variants of it, GHZ’s demonstration of the incom-
patibility of quantum mechanics with EPR’s propositions
concerns only perfect correlations rather than statistical
correlations, and it completely dispenses with inequal-
ities. The problems of geometry involved in more than
three particles correlation are certainly more complicated
and not discussed here.

For a better understanding of Bell’s theorem, a brief
review of the historical background is needed®=14]. Ein-
stein et al. (hereafter referred as EPR) presented that
certain plausible propositions about locality, reality, and
theoretical completeness are incompatible with the pre-
dictions of two-particle quantum mechanics!'213], They
considered a system consisting of two spatially separated
but quantum mechanically correlated particles. For this
system, they showed that the results of various experi-
ments of the associated system are predetermined, but
this fact is not part of the quantum-mechanical descrip-
tion of the associated system. Hence that description is
an incomplete one. To complete the description, it is nec-
essary to postulate additional ‘hidden variable’. In 1965,
J. S. Bell considered a Gedanken-experiment of Bohm (a
variant of that of EPR)[1:'4]. The system consists of two
spin —1/2 particles, prepared in the quantum-mechanical
single state U. Let Az be the result of a measurement
of the spin component of particle 1 of the pair along the
direction of vector @, and By be that of particle 2 along

the direction of vector 5, we take the unit of spin as 7/2,
hence Ag, By = 1. The product Az - By is a single
observable of the two-particle system. For Gedanken-
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experiment, one can calculate the quantum-mechanical
prediction for the expectation value of this observable

[E@@, b))y = (9|3, - @, - b|¥) = —a- b. (1)

In a deterministic hidden-variable theory the observ-
able Az, By has a definite value Az())Bj()). The expec-
tation of Az, By for such theories is given by

B@1) = [ A0BNp @)
Subsequently Bell proved the first inequality

|B@, ) — B(@,) <|1+ E@,2). (3)
By taking 4, b and ¢ to be coplanar, with ¢ making an
angle of 2% with @, and b making an angle of ¥ with @
and &, it is shown that quantum-mechanical prediction
and inequality (3) are incompatible with each other. In
1971 Bell proved the second inequality
-2< E(@,b) — E@,b)+E@,b)+ E@,b) <2 (4)
Similarly by taking @, @, b and b to be coplanar, and
assuming the angles ¢ between vectors as

- -

I N
j@—bl =|a' —b| = |a' - ¥| = 5la - b| = ¢, (5)

the incompatibility of quantum mechanical prediction
with inequality (4) can be proved. Clauser and Horne
also proved Bell’s theorem for general local realistic the-
ories, the results are formulated in terms of single and co-
incidence counts, rather than the expectation value con-
sidered in the ideal Gedanken-experiment[®. This has
the advantage that can be checked by measuring the fre-
quency of joint detection of photons with polarisers in
only two different relative orientations, yet in Clauser
and Horne theory, taking vectors &, d', b and &' being
coplanar and the angles ¢ between vectors satisfying Eq.
(5) are the same as above used in the proof of the incom-
patibility of quantum-mechanical prediction and inequal-
ity. On account of this, the arrangement of this paper is
as following. First, we deduce the violation of Bell’s in-
equality by quantum theory under two conditions: one is
the case of observation direction vectors @, b and & being
coplanar, other is that @, 3, @ and &' being coplanar, then
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Fig. 1. The violation of the first Bell’s inequality by quantum
theory in case @, b and € being coplanar.

we deduce the violation of Bell’s inequality by quantum
theory in general cases, i.e. without the restriction of
vectors being coplanar.

Using the condition of the vector @, band & being copla-
nar, and forming a triangle as shown in Fig. 1, the angles
are denoted by «, 8, v, and the corresponding sides sub-
tended are denoted by a, b, c. Based on plane trigonom-
etry, the following identity establishes

cosa + cos 5 + cosy

1
—1+ﬁ(a+b—c)(a—b+c)(b+c—a)

B . By
_1+4s1n2sm2sm2. (6)

Noting the vectors marked in Fig. 1 and using the expec-
tation value of quantum mechanics Eq. (1), we have

E(gaalll_ (:E)——COSC%
E(a7a\ll = (675) _COSIB7
E(@,B)e = —(a,5) = —cos1. (7)

Substituting Eq. (7) into (6), yields

-,

1+ E(b, &)y = E(@,8)v — E(@,b)w
1
—%(a+b c)(b+c—a)(c+a—b)
< E(a7é')‘ll - E(a7 b)‘I’7 (8)
and
(@30 — B(@B)e| > 1+ EG,do. 9)

In comparison Eq. (9) with the first Bell’s inequality
(3), we have

|E(@,b) - E(@,d)| <1+ E(b,). (10)

We conclude that the first Bell’s inequality is violated

in the case of vectors shown in Fig. 1. As for the viola-

tion of the second Bell’s inequality, let us consider the

triangles formed by the coplanar vectors @, @', b and '

shown in Fig. 2 and write the expectation value of quan-
tum mechanics as

E(@,b)g = — cos?/,
E(@,b)e = cosj,
E@, by = —cosf' (11)
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Fig. 2. The violation of the second Bell’s inequality by quan-
tum theory in case @, @', b and b’ being coplanar.

-

E(Ei7 E)‘I’ - E(6717)W + E(a’7g)\ll + E(a"7bl)‘11
= —cosy —cosf3 —cosy' —cos
—(cosa + cos B + cosy + cosa’ + cos B + cos')

——(1+4sin%sin§sin%
+1+4sin%,sin%lsin%l). (12)
|E@,b)e — E@,F)e + E@,b)v + E@, vl

=2+4sin%sin§sin%+4sin%’sin%sin%,

> 2. (13)

Obviously Eq. (13) is a violation of the second Bell’s
inequality (4)

The violation of the first and second Bell’s inequalities
can be written from Eqgs. (9) and (13) in the form

- E@b)w +E@, b + E@,b)e| <2. (14)

Vi = |E@,B)w — E(@ dw| — |1 + E(, &)
= 4sm%sm§smg (15)
Vo = |B(@b)e — B@ Ve + B@, D)o + B@, V)| -2
=4sin%s1 g %+4s1n%,sm5smf; (16)

imal violation of the first B ?l ’s 1nequahty th =1/2,
and fora =o' =%, 8 =8 =v=+" =%, Eq. (16)
yields Vo, = 8sin T 1 sin? g =2/2 - 2.

Now we prove the violation of the first Bell’s inequality
by quantum theory in general case of vectors d, band ¢
being not in a plane. Without loss of generality, taking
b as the polar axis, writing the polar angles of s, € as
@.(7,¢), &a,0) and rotating @, around b with the angle
~ invariant up to @(v, 7) such that @, b and & being copla-
nar, shown in Fig. 3, and denoting the angles between
and ¢, @ and € by ® — 85, m — 3 respectively, finally we
have

Obviously for a = ﬁ v = Z, Eq. (15) yields the max-
he

cos(d, - ¢) = cos-ycos @ + sin asiny cos
= cos(y + a) + sinasiny(1 + cos ¢),
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Fig. 3. The violation of the second Bell’s inequality by quan-
tum theory in general case.

cos(m — fB5) = cos(m — ) + sinasiny(1 + cos ),
cos & + cos ;s + cosy = cosa + cos 5 + cos -y
— sin asiny(1 + cos ). (17)

Substituting Eq. (6) into (17), yields
cos a + cos fs + cosy

=1 +4sin%sin§sin% — sin asiny(1 + cos )

_ oy ytae a7y
=1+ 4sin 5 Sin 2[cos 5 €08 o €08 2(1 + cos p)]
= 1—sinasinfy[coscp+tan%ta,n %] (18)

Referring to Fig. 1 with @ replaced by @, and writing

E(b,d)y = —(b,&) = — cosa,
E(f_fsaé')\ll = _(6878) = COSﬁs:
E(@,,b)e = —(@s,b) = — cosn. (19)

Substituting Egs. (19) into (18), leads to

E(ﬁs,é')q/ _E(687g)‘1’
=1+ E®,dv — sin e sin y[cos ¢ + tan%tan %] (20)

Therefore, depending on the signature of [ ] = [cos +
tan & tan 2] < 0 or > 0, we designate the regions in which
the first Bell’s inequality is violated or not by quantum
theory.

-, -

|E(6sab)\ll - E(@S‘:@W' > 1 + E(baa\lh
[1<0, violated,
|E(6sag)‘1’ - E(Eis:a)\l" <1+ E(R@\Iﬁ
[]>0, not violated. (21)

As for the second Bell’s inequality in general case, we
refer to Fig. 2. Taking b as the polar axis, the vectors

a(v,m), d'(y',m) being replaced by @s(7, ¢), (7', ¢'), in
the same way we can deduce

-

E(@,,b) — E(@,,b) + E@,,b) + E(@,, ')

= —(1 — sin Bsiny[cos  + tan g tan %]
! ’YI
+1 — sin 8’ sinv'[cos ¢’ + tan 5 tan 5])
=-2+{}, (22)

where {} =
sin B’ siny'[cos ¢’ + tan % tan %’] Depending on { } < 0
or > (0, we can designate the regions in which the second
Bell’s inequality is violated or not by quantum theory.
|E(@s,b)w — E(@s,8)w + E(@,,b)y + E(@,,b)e| > 2,
{} <0, violated,
|E(@s,b)w — B(d@y, b + E(@, b + (@, b)e| <2,
{}>0, not violated. (23)

sin Bsiny[cos + tan g tan 3] +

By varying the angles «, - with § invariant and
a+ B+ =7, such that tan § tan 7 attains a maximum
tan? ”—Zﬁ and consequently the region for the first Bell’s
inequality violated by quantum theory can be designated
as

T—=p
T <0.(24)

_ a Y 2
[1= cos<p+tan§tan5 < cosp + tan

The condition (24) cos ¢ < — tan? ”4;'3 (Fig. 4(a) dash
region) is a sufficient condition for the first Bell’s in-
equality violated by quantum theory. Using the same
condition for the second Bell’s inequality violated by
quantum theory, we have

cos ¢

cos @
cos ¢’

0.0 0.3 1.0 1.5 2.0 25 3.0
o (b)
Fig. 4. The sufficient condition for the first (a, dash region)

and second (b, dot region) Bell’s inequality violated by quan-
tum theory.
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which the Bell’s inequalities are violated.
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A B, v
{ } = sin Bsin~y[cos ¢ + tan 5 tan 5]

IBI ,.YI
+ sin 3’ siny'[cos ¢’ + tan 5 tan 5]
< sin B sin y[cos ¢ + tan? %]

T —

+ sin B’ siny'[cos ¢’ + tan®
= sin B sin y[cos ¢ + tan? %]
+ sin B’ siny'[cos ¢’ + tan? %]

<0. (25)

Obviously the conditions cos¢ < —tan® 2% and
cosy’ < —tan® % (Fig. 4(b) dot region) guarantee the
second Bell’s inequality violated.

In conclusion, under the conditions of vectors &, band c
a, I;, @ and b’ being coplanar, according to quantum me-
chanics and plane geometry we derive the analytical ex-
pressions of the violation and maximal violation of Bell’s
first and second inequalities as Egs. (9), (13); (15), (16).
The violation of the first Bell’s inequality Vi, ranges
from 0 to 1/2. The violation of the second Bell’s in-
equality Vom ranges from 0 to 2v/2 — 2, the maximum
Vom + 2 = 2v/2 is allowed by Cirel’son’s theorem![3-4],
In general case, relaxing the restriction of vectors being
coplanar, we find out sufficient conditions for the region

W. Tan’s e-mail address is weihantan@163.com.
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